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ABSTRACT 

We present a theoretical framework that can be used to treat 

approximation techniques for very general classes of parameter estimation 

problems involving distributed systems that are either first  or second order in 

time. Using the approach developed, one can obtain both convergence and 

stability (continuous dependence of parameter estimates with respect to the 

observations) under very weak regularity and compactness assumptions on the  

set of admissible parameters. This unified theory can be used for  many 

problems found in the recent literature and in  many cases offers significant 

improvements to existing results. 
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1. Introduction 

An important class of scientific problems related to the control of flexible 

space structures entails the estimation of parameters in distributed or partial 

differential equation models. These inverse or parameter identification 

problems arise in several contexts. A rather obvious class of such problems 

involves the development and identification of physical models for flexible 

structures - e.g., see [BCl], [BC2], [BCR], [BR2], [BPR], [BWIC], [BFW]. In these 

problems one typically investigates models from structural mechanics which 

contain parameters representing elastic properties (such as stiff ness, damping) of 

materials. The inverse problems then consist of estimating these parameters 

using data  obtained from observations of the system response to dynamic loading 

or displacement. The partial differential equation models usually are second 

order in  time, higher order in space (for example, the Euler-Bernoulli or 

Timoshenko beam models and their higher dimensional analogues for plates, etc.). 

The related inverse problems can prove quite challenging, but are extremely 

important as a precursor to and integral part of the design of control strategies 

for space structures. 

A second, less obvious, class of inverse problems that are important in the 

study of space structures involves those arising in material testing, in particular, 

in the area of nondestructive evaluation of materials. These problems, such as 

those related to the detection of structural flaws (broken fibers, delaminations, 

cracks) in fiber reinforced composite materials, have been addressed at NASA 

(for example, in connection with evaluation of the solid rocket motors for the 
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Space Shuttle) using a variety of techniques (acoustic, thermal, etc.). Ome 

technique [HWW], [BKO] entails the use of thermal diffusivity properties (a 

thermal tomography) to characterize materials. The resulting inverse problems 

involve using boundary observations for the estimation of thermal diffusion 

coefficients and interior boundaries of the domain (i.e. the geometrical 

structure of the system domain) for the heat equation in two or three space 

dimensions. These so-called domain identification problems thus constitute an 

important class of parabolic system identification problems related to space 

structures. 

In this paper we present a general convergence/stability (continuous 

dependence on observations) framework for  approximation methods to treat 

parameter identification problems (see [BCK]) involving distributed parameter 

systems. This new parameter estimation convergence framework combines a 

weak version of the system (in terms of sesquilinear forms in the spirit used 

in [BKl]) with the resolvent convergence form of the Trotter-Kat0 

approximation theorem [PI, [BK2]. The very general convergence results 

depend (in addition, of course, to the usual properties for the associated 

approximating subspaces) on three properties of the parameter (q E Q) 

dependent sesquilinear form a(q)( -, -) describing the system: (A) continuity 

(with respect to the parameter); (B) uniform (in the parameter) coercivitv; and 

(C) uniform (in the parameter) boundedness. The approach permits one to 

give convergence and stability arguments in  inverse problems under extremely 

weak compactness assumptions on the admissible parameter spaces Q 

(equivalent to those in typical variational or weak approaches--see [I3 11, 

[BCR]) without requiring knowledge of smoothness of solutions usually a part 
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of the variational and general f inite element type arguments. Thus this 

approach combines in a single framework the best features of a semigroup 

approximation approach (i.e., the Trotter-Kat0 theorem) with the best features 

of a variational approach (weak assumptions on Q). The weakening of the 

compactness criteria on Q is of great computational importance since the 

constraints associated with these criteria should be implemented in problems 

(see [BI] for further discussion and examples). 

An additional significant feature of the approach described in this paper 

is that for  first order systems it yields directly a stronger convergence (in the 

spatial coordinate) than one readily obtains without extra effort  in either the 

convergence arguments using the usual operator convergence form of the 

Trotter-Kat0 formulation (e.g., see Theorem 2.2 of [BCK] and Theorem 2.4 of 

[KW]) or the finite element type variational arguments (e.g., see, Theorem 4.1 

of [BRI] and the related remarks in [BRLI]). 

While the approach we present here does involve coercivity of certain 

sesquilinear forms associated with the system dynamics, its applicability is not 

restricted to parabolic systems which generate analytic semigroups. As we 

shall demonstrate in Section 3 below, it can be used to treat problems in which 

the underlying semigroup is not analytic (e.g., those involving Euler-Bernoulli 

equations for beams with Various types of damping-viscous, Kelvin-Voigt, 

spatial hysteresis), improving substantially on some of the currently known 

results for these problems. With appropriate modifications, this theoretical 

framework can be generalized to also allow an  elegant treatment of problems 

involving functional partial differential equations, e.g., beams with Boltzmann 

damping &e., time hysteresis) -- see [BFW]. 
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2. First Order Systems 

We consider first order systems dependent on parameters q E Q described 

by an  abstract equation 

in a Hilbert space H. The admissible parameter space Q is a metric space 

with metric d and for q E Q, we assume that A(q) is the infinitesima.1 

generator of a C, semigroup T(t;q) on H. We assume that we are givein 

observations tii E H for the mild solution values u(ti,q) of (2.1); i.e., we solve 

(2.1) in the sense 

in H. We then consider the least squares identification (ID) problem of 

minimizing over q E Q the functional 

Such problems are, in general, infinite dimensional in both the state u and  

the parameter q and thus one must consider a sequence of cornputationally 

tractable approximating problems. These can be, for our purposes, best 

described in terms of parameter dependent sesquilinear forms o(q)( -, - )  

associated with (2.1) or (2.2) (i.e., forms which define the operators A(q) in 

(2.1)). For more details and examples in the parabolic case, we refer the 

reader to [BKl]. Briefly, let V and H be Hilbert spaces with V continuously 
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and densely imbedded in H. Denote a family of parameter dependent 

sesquilinear forms by u(q): V x V -. C, q E Q. We assume that u possesses the 

following properties: 

(A) Continuitv: For q,ij E Q, we have for all 4,$ E V 

(B) Coercivitv: There exist c1 > 0 and some real X, such that for q E Q, 

Q E V we have 

@q)(4,4) + X,,l@Ik 3 cll@I& 

(C) Boundednesg There exist c2 > 0 such that for  q E Q, @,$ E V we have 

Under these assumptions, u defines in  the usual manner (e.g., see [K], [SI) 

operators A(q) such that a(q)(#,$) = <-A(q)4,$>H for 4 E dom(A(q)), $ E V with 

dom(A(q)) dense in  V. Furthermore, A(q) is the generator of an  analytic 

semigroup T(t;q) on H (indeed, A(q) is sectorial with (XI - A(q))dom(A(q)) = H) 

and mild solutions of (2.1) possess additional regularity (e.g. see Chap. 4 of [PI and 

Chap. 4 of [ 5 ] )  under appropriate assumptions on F. Property (B) guarantees that 

for  X 3 1, the resolvent operator R1(A(q)) (XI - A(q))-' exists as a bounded 

operator on H; in fact, it follows readily from (B) that (assuming I.IH d kl - I v )  we 

have 

c,lR 1(A(q))+l:, <$,R X(A(q)NJ>, 

6 l+l,lRX(A(q))+lH 

s k21+lvIR~(A(S))4Jl, 
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and hence for JI E V 

while for J, E H we find 

(2 .5)  
k2 

IRl(A(q))JI(H -14IH. 
c1 

In addition, one can use (B) and (A) to argue that q + RX(A(q)) is a 

continuous mapping from Q to V. It  is these ideas that can be modified to 

give resolvent convergence in the approximation schemes which we introduce 

next. 

We consider Galerkin type approximations in the context of sesquilinear 

forms (e.g., see [BKl] for  further details). Let HN be a family of finite 

dimensional subspaces of H satisfying PNz -. z for  z E H where PN is the 

orthogonal projection of H onto HN. We further assume that HN C V and that 

the family possesses certain V-approximation properties to be specified below?. 

If we now consider the restriction of a(q)(-,.) to HN x HN, we obtain 

operators AN(q): HN -. HN which, because of (B), satisfy a uniform dissipative 

inequality and can be shown to generate semigroups TN(t;q) in HN. These are  

then used .to define approximating systems for (2.2): 

t 

uN(t;q) = TN(t;q)PNuo(q) + TN(ts;q)PNF(s,q)ds. (2.6) 
0 

t 

One thus obtains a sequence of approximating ID problems consisting of' 

minimizing over Q 
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In problems where Q is infinite dimensional (the usual case in many inverse 

problems of interest), on must'also make approximations QM for Q (see [BD] 

[BR2] for details). To include this aspect of the problem in our discussion 

here does not entail any essential mathematical difficulties. Since it would 

increase the notational clutter and provide no new mathematical insight, we 

do not pursue the theory in that generality. 

To obtain convergence and continuous dependence (of parameter estimates 

with respect to observations) results for the solutions iN of minimizing JN in  

(2.7), i t  suffices under the assumption that (Q,d) is a compact space (see [Bl]) 

to argue: for arbitrary (qN) C Q with qN -. q we have uN(t;qN) -. u(t;q) for each 

t. Under reasonable assumptions on F and u,,. this can be argued if one f i rs t  

shows that TN(t;qN)PNz + T(t;q)z for arbitrary qN -. q and z E H. To do this 

one can use several versions of the Trotter- Kat0 theorem [PI, [BK2]. We state 

precisely the "resolvent convergence form" of this theorem in a form tha t  is 

general enough for us to use in several contexts subsequently in this paper. 

Let X and XN, N = 1,2, ..., be Hilbert spaces, XN C X, and let PN: X -. XN 
be the orthogonal projection of X onto XN. We assume the X"s approximate 

X in the sense that PNx + x for all x E X. Then we have: 

Theorem 2.1: Let AN and A be infinitesimal generators of C ,  semigroups SN(t) 

and S(t) on XN and X, respectively, satisfying: 

(i) 

(ii) 

There exist coilstants w, M such that ISN(t)l < MeWt for each N; 

There exists X E p(A) G=l p(AN) with Re X > w such that 

RX(AN)PNx 4 RX(A)x for  each x E X. 

Then 
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(iii) For each x E X ,  SN(t)PNx + S(t)x uniformly in t on any compact interval 

[O,t'I. 

We may assume without loss of generality that the constants w and M of 

(i) are chosen so that S(t) also satisfies the bound in (i). 

There is an alternate version (we shall for obvious reasons refer to this 

version as the "operator convergence form") of the Trotter-Kat0 theorem which 

has been frequently used [BCK], [BCl], [BC2], [R] in parameter estimation 

problems. This vzrsion replaces condition (ii) above by the condition: 

(ii') There exists a set I) dense in .X such that for  some X, (XI - A)D is dense 

in X and ANPNx 4 Ax for all x E D. 

As we have already noted, it is the resolvent convergence form of this 

theorem which we shall wish to make use of in our theoretical framework 

since, as we shall show, for our first order systems condition (ii) will follow 

readily from (A), (B), (C) and a condition on how HN approximates H. The  

entire theory will require only that Q be compact in the metric d used in the 

continuity statement (A) for the sesquilinear form. This will, in general, ble 

much weaker than that compactness required for use in proofs employing 

condition (i?), since the requirements on "qN + q" to insure AN(qN)PNz A(q)z 

typically involve convergence of some derivatives of the qN. For example, in 

first order parabolic equations containing variable coefficients to be 

estimated, this results in a requirement that Q be compact in H' whereas use 

of the sesquilinear form approach developed in this paper requires only 

compactness of Q in C or LOD (see [BI] for further discussion of this point). 
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Before turning to our convergence arguments, we state the convergence 

properties required of the approximating subspaces HN alluded to above. 

Throughout our discussions, we shall assume: 

(Cl)  For each z E V, the,re exists iN E HN such that lz - iNIV - 0 as 

N 4 -. 

Theorem 22: Let conditions (A), (B), ( C )  and (Cl) hold and qN - q in Q. Then 

for X = X,, RX(A N N  (q ))PNz + RX(A(q))z in the V norm for any z E H. 

Proof: First note that since AN(qN) results from the restriction of u to HN x 

HN, we can choose X = X, in (B) so that X E P(A(q)) p(AN(qN)) with X > w 

(and indeed bounds similar to those of (2.4), (2.5) hold €or RX(AN(qN))PN). 

Let z E H be arbitrary and for notational convenience put w = w(q) E 

RX(A(q))z and wN = wN(qN) RX(AN(qN))PNz. Since w E dom(A(q)) C V, we 

may use condition (Cl) to define a sequence (&IN) satisfying IkN - wlv - 0 as 

N + - .  

We wish to show IwN - wlv - 0. If we argue that IwN - kNlv 0, the 

desired results follow immediately from the triangle inequality. 

Let zN wN - GN so that zN E HN C V. Using <-,.> to denote the inner 

product in H, we find 

a(q)(w,zN) = <-A(q)w,zN> = <(X - A(q))w,zN> - X<w,zN> 

= <z,zN> - X<w,zN> 

and 



-10- 

o(qN)(wN,zN) = <-AN(qN)wN,zN> = <(X - AN(qN))wN,zN> - X<wN,zN> 

= <PNz,zN> - X<wN,zN> 

= <z,zN> - X<wN,zN>* 

Hence we have 

a(q)(w,zN) = a(qN)(wN,zN) + X<wN - w,zN>. 

Using this with (B) we obtain 

If we use (A) and (C), we thus have 

cllzNi$ < d(q,qN)lwI+Nlv + ~ ~ l w ~ ~ l ~ l z ~ ~ ~  + X( <w-wN,zN> + IzN&). 

Finally, since 

the above inequality may be written 

Thus, using I - I H  < kl-1, we find 
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which, from the definition of {kN) and the fact that q N  + q, yields the 

desired convergence zN = wN - GN + 0 in V norm. 

Since V norm convergence is stronger than H-norm convergence, we can 

use the results of this theorem along with Theorem 2.1 for X = H, XN = HN, 

P N  = PN, AN = A N N  (q ), A = A(q) to obtain immediately that TN(t;qN)PNz -. 

T(t;q)z for z E H, the convergence being in the H norm. This along with (2.2) 

and (2.6) can be used to argue the desired convergence uN(t;qN) -. u(t;q) in  the 

H norm (assuming, of course, appropriate smoothness of F and uo in q E Q). 

However, with no additional assumptions and only a little extra effort, one 

can obtain this convergence in the V norm. As we shall explain below, this 

stronger convergence is often immensely useful in parameter estimation 

problems where the observations may be continuous in the V norm, but not in  

the H norm. 

Theorem 2.3: Under the hypotheses of Theorem 2.2, we have for each z E H, 

TN(t;qN)PNz + T(t;q)z in the V norm for t > 0, uniformly in t on compact 

subintervals. 

Proof: To establish these results, we first apply the Trotter-Kat0 theorem in 

the space X = V with XN = HN. Let P:: V + HN denote the orthogonal 

projection of V onto HN in the V inner product. Then hypothesis (Cl) implies 

P7f + f in the V norm for any f E V as well as PNf + f in the H norm for  

any f E H. 

To carry out our arguments, we shall employ several bounds for resolvents 

similar to but sharper than those of (2.4), (2.5). These bounds follow from 
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results in Tanabe (c.f. Lemma 6.1 of Chapter 3 in [TI); we note that our 

operator A can be extended to A: V 4 V* as in [TI so that the results given 

there are applicable as used below. (In [TI, the condition (B) is assumed to 

hold with X, = 0 and we, without loss of generality, state our bounds for this 

case.) The first bound we shall use yields for f E V 

where c is independent of N. Using this with f = P:z - PNz for z E V along 

with the results of Theorem 2.2 we obtain RX(AN(qN))P:z 4 RX(A(q))z in 'V 

norm for any z E V. This is (ii) of Theorem 2.1 with X = V, XN = HN and 

PN = P;. 

To obtain the uniform stability bound (i) of Theorem 2.1 in the V-norm, 

we make use of another bound that follows from [TI. From the last bound of 

Lemma 6.1, Chap. 3 of [TI one may readily argue that for f E V 

where M, is independent of N. The arguments behind (2.9) involve using 

(3.51) of [TI for A* and observing that for 7 E V, v E V* arbitrary so that 

RX(A)y E V = V** we have (using the usual notation for the duality product) 
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We may use the bound (2.9) in the identity 

eXtRX(A N N  (q ))dX, (2.10) 

where r is a contour (about lo) similar to that given in [P, p. 631, to argue for  

z E HN 

where M is independent of N. Thus one obtains ITN(t;qN)lv < MeXot. (These 

results are essentially given in [TI; one just needs to check the arguments to 

ascertain that the constant M depends on AN only through the bounds c1 and c2 

of conditions (B) and (C) and the sector angle 6 for AN -- where 6 again 

depends only on c1 and cz.) 

We may then apply Theorem 2.1 as indicated to obtain TN(t;qN)PFz 4 

T(t;q)z in  V norm for every z E V. It remains to argue that TN(t;qN)PNz - 
T(t;q)z in  V norm for every z E H. 

If we use the bound (2.8) in (2.10), arguments similar to those used to 

establish (2.11) can be made to give 

- X t  
ITN(t;qN)zlv d Me t-1/21zlH, t > 0, z E HN , (2.12) 

where again is independent of N. 

Recalling that V is dense in H, then given z E H and E > 0, we may 

choose zv E V such that Izv - zIH < E .  Then noting that T(t;q)z E V for t > 0, 

we have 
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From (2.12) we see that the first term in the right side of this inequality is 

bounded by &xott-1/21PNz - P!Z& which, as N 4 -, approaches 

Me x o t t- 1/2, ZZ&. The third term is also bounded by a similar expression, 

while the second term approaches zero as N -. by our previous arguments. 

We thus have established the convergence claimed in the statement of Theorern 

2.3. 

Among the examples that can be treated immediately with the above 

theory are the usual parabolic systems (see [BKI], [L]). To illustrate these 

ideas, consider the estimation problem for the standard Dirichlet boundary 

value problem for one-dimensional parabolic systems. That is, 

aU a a 
at ax 1 ax ax 
- =  - [q "1 + -(q2u) + q p  on n=  (0,1) 

u(t,O) = u(t,l) = 0, 

with q = (q1,q2,q3) to be chosen (via a least squares criteuon) from Q, a 

compact subset of C(f2) x C(n) x C(fl). The state spaces are  H = Ho(f2), V := 

Hi(fl) and the weak form of the equation is given by 

where the sesquilinear form is defined as 
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with D = i3/i3x. One can readily verify that conditions (A) and (C) hold, 

while the coercivity condition (B) is valid if we assume elements of Q satisfy 

ql(x) b v > 0 for  some constant v. 

In this case one can specify the domain of A(q) by 

and A(q)y = D(qlDy) + D(q,cp) + q3y. For approximating elements one can use 

either piecewise cubic or piecewise linear B-splines modified to satisfy the 

Dirichlet boundary conditions. 

We note that the theory above only requires compactness of Q in the 

[C(n)I3 topology along with relatively weak smoothness assumptions when 

compared with other approaches (see [BK3], [BKLI], [BKL2], [BCK]). 

Furthermore we obtain V = HA(fl) convergence of the statcs. Hence the theory 

is complete for  least squares criterion involving pointwise (in x) observations 

of the state. This is obtained for  little extra effort  when compared with the 

efforts usually required to obtain the stronger convergence (see [BCK], 

[BKLI]). 

Other parabolic examples of great practical .importance can be readily 

treated in the context of this framework. For example, the 2-D thermal 

tomography problem mentioned in the Introduction and discussed in [BKO] 

results in a boundary identification problem for parabolic systems. With a 

standard transformation these problems can be readily treated theoretically and 

computationally with the approach of this paper. Details can be found in 

[BKO]. 

Another class of problems of interest involves estimation of coefficients 
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in the Fokker-Planck or forward Kolmogorov equations (see [B2]) for the casle 

where the Markov transition process for growth is time invariant in size/age 

structured population models. In this case the equations have the form 

with boundary conditions 

a x=xl 

[ q p  - z ( q 2 u ) ]  = 0. 

The associated sesquilinear form is given by (here H = Ho(xo,xl), V = 

H'(x,,x,)) 

dq)(V,$)  = --<qlcP - D(qzV),Dd'> - d'(Xo)R(q&V) I -  <qsQ,$> 

with R(q4)(cp) = lx' q,(C)cp(C)dC. Under appropriate assumptions on Q C LaD(fl) 

x Wkl)(fl) x Ldfl) x LJfl), fl = (x,,~,), (see [B2] for details) one can readily argue 

that hypotheses (A), (B), (C) hold. Thus these problems also fall within the 

XO 

purview of the theory developed here. 
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3. Second Order Systems 

The ideas developed in the previous section can be applied to parameter 

estimation problems involving second order systems of the form 

G(t) + B(q)Q(t) + A(q)u(t) = f(t) (3.1) 

in a Hilbert space H where the operators A(q) and B(q) are defined via 

parameter dependent sesquilinear forms in a manner similar to that of Section 

2. We use the general approach given in [SI; we again assume we are given a 

Hilbert space V C H that is continuously and densely imbedded in H. Let 

ul(q): V x V + Q be a symmetric sesquilinear form satisfying conditions (A) 

and (C) of Section 2 and the V coercivity condition (B) with 1, = 0. Then fo r  

each q E Q we may define continuous linear operators A(q): V -. V* given by 

for  @,$.E V, where as customary, we have identified the pivot space H with i ts  

dual H*, i.e., V C H = H* C V* and the duality product (-, -)v+,v is the unique 

extension by continuity of the scalar product <-,-> of H from H x V to 

V* x V (e.g., see [SI for  details). Of course, as in Section 2, we may also view 

A(q) as a densely defined operator in H where ul(q)(@,$) = <A(q)@,Jt>, fo r  

4 E dom A(q), Jt E V. The sesquilinear form ul and its associated operator A 

will correspond to the "stiffness" operator in the examples we treat below. 

A second sesquilinear form will give rise to the "damping" term in o u r  

examples. We assume we are given . a  (not necessarily symmetric) sesquilinear 

form u2(q): V x V - Q satisfying conditions (A) and (C) and the semicoercivitv 
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condition 

(B') H-semicoercivity: There exists b 2 0 such that for q E Q and Q E TI 

we have 

02(q)(4,4) 3 blrLIi. (3.3) 

As before, under condition (C) on u2, we may define a continuous linear 

operator B(q): V 4 V* given by 

qq) (4 ,4)  = (B(q)@,#)r)v+,V' (3.4) 

Again, we may alternatively view B(q) as being densely defined in H. 

However, since we may wish in general to view equation (3.1) as an equation 

in V* (again following classical formulations [SI, [L], [TI) we shall interpret 

A(q) and B(q) as members of X(V,V*). We note that from conditions (B) anti 

(C) on ul, the form ul(q) is, 'for each q E Q, equivalent to the norm inner 

product in V; indeed& we can use ul(q) to define a parameter dependent 

equivalent inner product in V. We shall use Vq to denote the Hilbert space 

consisting of the elements of V equipped with this inner product. 

We shall rewrite equation (3.1) in  first order form and to that end we 

define the product spaces V = V x V and K = V x H. If <.,->" denotes the 

inner product in V, we may use u1 and u2 to define a sesquilinear form 

u : I' x W -. Q given by 

We may then write equation (3.1) in weak or variational form as 

(3.5) 

(3.6) 
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where w(t) = (u(t),v(t)), x = (#,$), F(t) = (f(t),O) and <-,- >X is the usual product 

space inner product. Alternatively, we may write equation (3.1) as 

w(t) = A(q)w(t) + F(t) (3.7) 

where A(q) is the operator associated with the sesquilinear form u in the usual 

manner. 

Following this approach, we define in K = V x H the operator 

on dom A(q) = ((4,4) E X I 4 E V and A(q)# + B(q)4 E H} C V. We can readily argue 

that dom A(q) is dense in K= V x H and that, under the conditions on o1 and 02, for 

X > 0 the range of XI - A(q) is X (see the arguments given below). Moreover, A(q) 

is dissipative in  Kq E Vq x H since for  (&$) Edom A(q) 

Thus by the Lumer-Phillips theorem (e.g. see Chap. 1, Thms. 4.3,4.6 of [PI) we f ind 

that A(q) generates a semigroup of contractions on Vq x H. Since Vq and V possess 

equivalent (uniformly in q E Q) norms, we have that A(q) is the infinitesimal 

generator of a C,-semigroup T(t;q) on K = V x H. If the form u2 satisfies (3.3) with 

b > 0, then one can show that this semigroup is uniformly exponentially stable, 

Le., IT(t;q)l < Me"' €or some M 2 1 and w > 0. Furthermore, if the H 

semicoercivity of (3.3) is replaced by V coercivity, Le., b > 0 and the H norm is 

replaced by the V norm in (3.3), then T(t;q) is an analytic semigroup on X = V x H. 
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t) = -<A(q)xt>x for x E d nd t E V := 

V x V, one might be tempted to apply the arguments and results of Section :2 

to this sesquilinear form with V and K playing the role of the spaces V and €1 

in the theory of Section 2 (Le., treat this system generated by A(q) as a first 

order system in K and apply without modification the theory in Section 2). If 

one did this, then conditions (A), (B) and (C) must be satisfied by u(q) using 

the norms of K and V. Conditions (A) and (C) pose no difficulty under the 

assumptions of (A) and (C) on u1 and u2 given above. However to argue that 

u(q) is V coercive (condition (B) of Section 2), one finds that the 13 

semicoercivity condition (3.3) on u2(q) must be strengthened to V coercivity. 

While some damping forms of interest (e.g. strong Kelvin-Voigt damping -- we 

discuss this below) do satisfy this stronger condition, several important types 

of damping lead to sesquilinear forms that don’t. Hence we shall modify the 

arguments behind Theorem 2.2 in order to enable us to treat the more general1 

cases. 

We shall throughout our discussions henceforth assume that ul satisfies 

conditions (A), (B) with X, = 0, and (C), while o2 satisfies conditions (A), (B’) ,  (C). 

Again we shall be interested in a resolvent convergence form of the Trotter-Kat0 

theorem and hence must consider the resolvent of the operator A ( q )  given i n  

(3.8). 

To motivate our discussions, consider for  X > 0 the equation in X given by 

X = RX(A(q))t for x = (y,$), t = (0,7). This is equivalent to solving for x E 

dom(A(q)) in the equation ( X I  - A(q))x = t which may be written 
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If we substitute the first equation dJ = XQ - I) of this system into the second 

we have 

which must be solved for 'p E V. This suggests that we define, for X > 0, the 

associated sesquilinear form uX(q): V x V -. Q given by 

Since ul is V-coercive and u2 is H-semicoercive, we find for 'p E V 

Hence for 'p E V 

(3.1 1) 

(3.12) 

where i = (1' + Xb) > 0. Thus, for X > 0, the form uX is V-coercive and the 

equation (3.10) is solvable for '0 E V for any given { = (97) in X = V x H. It  follows 

then that defining JI using the first equation in (3.9), we may, for any € = (0,y), 

find an  element x = ( c p , J I )  in dom(A(q)) which solves (3.9); i.e. for X > 0, RX(A(q)) 

exists as an element in X(X). 

The coercive inequality (3.12) will be the basis of our convergence 

arguments. 
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We consider next a Galerkin ype approximation schem for equation (3.7). 

As in Section 2, we assume approximation subspaces HN C V satisfying 

condition (Cl). Then for any w E V = V x V and each N, there exists GN E: 
H~ x H~ satisfying as N - - 

I P  - wlv -. 0. (3.13) 
I 

To define the approximating systems, we consider u(q) defined in (3.5) 

restricted to ItN E HN x HN and obtain in the usual manner the operators 

AN(q): ItN -, ItN. Since (3.12) holds, we have immediately that RX(AN(q)) exists 

in X(ItN) for X > 0. Denoting by PN the orthogonal projection of It onto ItN, we 

may then prove the following convergence results which is analogous to that 

of Theorem 2.2 for  first order systems. 

Theorem 3.1. 

(C) for a2 and (Cl) hold and let qN + q in Q. 

RX(AN(qN))PNC, + RX(A(q))C, in the V norm fqr any C, E K . 

Suppose that conditions (A), (B) with X, = 0, (C) for ul, (A), (BI), 

Then for X > 0 we have 

N N  Proof. Let C, E K be arbitrary and put w = w(q) = RX(A(q))C,, wN = w (q ) = 

RX(A N N  (q ))PNC,. Let w = (V,$J), C, = (S,y) so that equation (3.9) is satisfied by 

this pair. Also, letting wN = ((pN,rlfN), PNS = (vN,yN), we have that this pair 

satisfies (3.9) with q = qN. In particular, using (3.10) and (3.11) we find for  

5 E V  
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Since w = w(q) E dom(A(q)) C V, we may choose kN = (;",I& in IfN 

satisfying (3.13). Thus, choosing 5 = cN E 'pN - GN in HN C V, we may use the 

above equalities to obtain 

We use this to argue that S N  0 in V. 

Applying the estimate (3.12) to the element S N  = yN - iN and then using 

(3.14) we find 

(3.15) 

The last four terms on the right side of this equality may be written as 

Using the definition (3.11) of aX and .the boundedness and continuity in q of 

ul, u2 (condition (C) and (A)) along with I - I H  4 kl-lv wc may bound f rom above 

the expression in (3.16) by 

(3.17) 
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where C E X2k2 + c2 + Xc,. We observe that since PN is the orthogonal 

projection of K onto HN, hypothesis (Cl) implies that (VN,yN) = PN(V,Y) + ( V . 7 )  

in H = V x H. Thus, IvNlv < K for some constant K. Since GN - cp in V, we 

may also assume icp lv < K. ^N 

Recalling that > 0, we can combine (3.15), (3.16), (3.17) and the abovc 

observations to obtain the estimate 

and thus tN - 0 in V. That is, cpN - iN - 0 in V and hence cpN - cp in V. 

Recalling that (cpN,@), (VN,yN) and (cp,$), (0,y) satisfy (3.9) with qN and q, 

respectively, we have that 

@ = ~cpN - vN and $ = Xcp - V. 

Thus we find immediately that 

WN =.(,PN,Jr) + w = (cp,$) in the V norm. 

-. J, in V. This completes the proof that 

Let TN(t;qN) denote the C, semigroup generated by AN(qN) in ItN. Then 

applying Theorem 2.1 with X = H , XN = HN and AN = AN(qN), we obtain 

immediately from the above discussions the following desired convergence 

results. 

Thcorcm 3.2. Under the hypotheses o f  Theorem 3.1, we have for each { E K am! 

t > 0,  TN(t;q )P F. + T(t;q)F. i r r  H, with the convergence being ziriiform in t O I I  

conipact subintervals. 

N N  

The needed convergence results for parameter estimation problems follows 
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directly from this theorem. In particular, for  solutions of (3.7) and their 

approximations we have (assuming, of course, appropriate smoothness in q of 

initial data and the perturbation function F) 

uN(t;qN) -. u(t;q) 

vN(t;qN) -, v(t;q) 

in v norm, 

in H norm. 

To illustrate the types of problems that can be investigated in the context of 

the theoretical framework developed in this section, we consider a cantilevered 

Euler-Bernoulli beam of unit length'and unit linear mass density. The transverse 

vibrations can be described by an  equation of the form (3.1) with' the operators 

A(q) and B(q) chosen appropriately (see e.g. [BCR], [BR2], [R] for detailed 

equations). We assume that the end a t  x = 0 is fixed, the end a t  x = 1 is free. Then 

the state spaces can be chosen as H = Ho(O,l) and V = HZ(O,l) = (Q E H2(0,1) I ~(0) = 

Dcp(0) = 0). The stiffness sesquilinear form u1 is given by 

where we assume the stiffness coefficient ql(x) = EI(x) satisfies q,(x) 2 a > 0 

and is in LJ0,l). The operator A(q) in (3.1) is given by A(q)cp = D2(EID2~) 

with 

dom A(q) = (Q E V I EID2v E H2(0,1), E ID2~(1 )  = D(EIo2~)(1)  = 0). 

If we denote by q, the damping parameter to be discussed in the following 

examples, then the admissible parameter set Q can be taken as a compact 

subset of 



With this formulation, a number of important damping mechanisms can be 

readily treated. 

Viscous damuing In this case air  or fluid damping is usually assumed 

proportional to the velocity of displacement so that the term B(q)u(t) in (3.1) 

has the form bu(t) for q2(x) = b(x). The damping sesquilinear form u2 is given 

by 

O~(S)('P,$) = 

which, for b(x) 3 0, satisfies the H-semicoercivity condition (B')  but of coursc: 

is not V-coercive. The domain of the operator in (3.8) is given by dom A(q) =: 

dom A(q) x V. 

Kelvin-Voivt damning: For these models the damping moment is postulated as 

being proportional to the strain rate and hence the damping term has the form 

D2(cDID2u(t)) where q2(x) = cDI(x). The associated sesquilinear form is given 

by 

02(q)(Q,$) = <CDID~'P,D~$>H 

which for cDI(x) 2 B > 0 satisfies a V-coercive condition and hence of course: 

the H-semicoercivity of hypothesis (B'). Letting M = EID2y + cDID2$ denote: 

the nmomentn of the beam, we have the domain of A(q) given by 

If we only have cDI(x) b 0, then only condition (B')  is satisfied but our 
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theoretical framework is still applicable. We note that results of the 

framework then provide a distinct improvement over the results for  the 

problems given in [BCR] (where smoothness assumptions on solutions must be 

hypothesized as well as q2 > 0) and [KG] (where a stronger and less readily 

characterized topology than that of C(0,l) or LJO,l) must be used for  the 

compactness assumption' on Q). 

Svatial hysteresis damving This damping model, which has been suggested 

recently and investigated by Russell in [RU], is based on physical foundations 

that appear particularly appropriate for fiber reinforced composite beams, 

e.g., beams of composite materials in which strands of fibers are lengthwise 

bound in an epoxy matrix. The damping term has the form B(q)u(t) = 

D((G(q) - vI)Du(t)) where .G(q) is a. compact operator in Ho(O,l) defined by a 

symmetric kernel qZ(xa)  = b(x,y) = b(y,x) b 0 a.r 

with b E Ho((O,l) x (0,l)) and v(x) E rib(x,y)dy. The associated sesquilinear 

form is given by 

which is readily seen to be H-semicoercive but not V-coercive. The generator 

(3.8) for  the semigroup has domain 

dom A(q) = ((Q,$) E V x H I 4 E V, EID2cp(i) = 0, 

[D(EID2v) + (VI G)DJI](l) = 0). 
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Time hvsteresis damDing: These models, referred to as Boltzmann damping 

models, have been widely studied in recent years (see e.g. [F], [BF], [HW] and 

the references therein) in connection with flexible structures. In an Euler- 

Bernoulli beam as formulated above, the damping term B(q)u(t) can be: 

replaced by a term that has the form 

-D2 g(s)D2u(t+s, .)ds 

where q2  = g(s) = aeB'/d?, a,B > 0. This means that equation (3.1) becomes a 

functional-partial differential equation or partial differential equation with 

delay or hereditary term. Thus the above theoretical framework is not 

directly applicable. However, as is shown in [BFW], the framework developed 

in  this section can be appropriately modified and extended to give a succinct 

theoretical treatment of approximation methods involving estimate 

convergence and continuous dependence on observations for these models also. 

We have used methods based on the theoretical ideas in this section to 

successfully estimate damping in a number of flexible structure experiments. 

To date we have studied viscous, Kelvin-Voigt, and Boltzmann damping in 

vibrations of composite beams [BWIC], [BFW]. 

Finally, we note that the ideas presented in this paper can be extended to 

provide a framework for the treatment of nonlinear distributed parameter 

systems. The coercivity conditions are  replaced by monotonicity assumptions 

and, of course, nonlinear semigroups (evolution systems) and a nonlinear 

Trotter-Kato approximation theorem play fundamental roles in development of 

this theory. Details can be found in a forthcoming manuscript [BRR]. 
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